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Abstract

New techniques are presented for using the medial axis to generate high quality decompositions for generating block-structured
meshes with well-placed mesh singularities away from the surface boundaries. Established medial axis based meshing algorithms
are highly effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly
when there are geometry concavities. This new approach uses both the topological and geometric information in the medial axis to
establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds
solutions that are most appropriate to the geometric shapes. Methods for directly constructing the corresponding decompositions
are also put forward.
c© 2014 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23).
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1. Introduction

An assessment of the relative performances of multiblock structured meshes of turbomachinery that were gener-
ated by medial axis based methods, Cartesian grid based methods and by manual interactive work was made in a
recent paper [1]. Adjoint error analyses in CFD simulations showed that the medial axis based methods generated
higher quality meshes, and this can be attributed to their boundary-sympathetic block configurations. But despite their
relative effectivenesses, there are still some obvious improvements to be made, such as more natural treatment of con-
cavities and responsiveness to geometric shapes. Addressing these limitations by employing the neglected geometric
information in the medial axis is the objective of this work.

1.1. Medial axis definition

For a 2-D surface, the medial axis is defined as the set of points where each point, p̂, has a centred inscribed circle,
U, that touches the boundary entities more than once. Distinct parts of the medial axis are characterised by the number
of touching points of U(p̂).

Medial edges connect subsets of the points with two touching points and they usually make up the majority of the
medial axis. The radius of U(p̂) is called the medial radius, rm, and the subtended angle between the radii of U(p̂)
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to the touching points is called the medial angle, θm. A special type of medial edge feature that frequently occurs is
termination at a convex corner where rm shrinks to zero. The corresponding medial edge is called a flare. These are
all illustrated in Fig. 1.

Fig. 1: Medial edge features and terminology (left) and medial axis for simple surface (right).

Medial vertices represent the meeting points of medial edges as U(p̂) transitions from one boundary pair to another.
In standard cases three touching points are involved and in special cases there are more than three. There are also
degenerate cases such as when U(p̂) is in finite contact with the boundary, or in a curvature contact situation such as
at the end of an ellipse when the curvature of U(p̂) equals that of the boundary, resulting in a single touching point
belonging to a medial vertex with θm equal to zero (cf. Fig. 9).

1.2. Review of established medial axis based decomposition algorithms

Quad meshing by medial axis decomposition was first conceived by Nackman and Srinivasan [2]. They noticed
that the medial axis presented a well-defined natural decomposition of the surface and used it without alterations to
split the surface into blocks. Some additional rules for merging the produced blocks were devised to enhance the
suitability of the decomposition.

An improved method was proposed by Tam and Armstrong [3] that produces better quality decompositions. They
developed a strategy for using a Constrained Delaunay Triangulation (CDT) of a set of boundary points, whose
circumcenters approximate the medial axis to an acceptable accuracy, to assemble ‘shape molecules’ characterising
a mesh topology. By inserting cuts between the medial vertices the shape molecules are reduced to ‘shape atoms’
which are topological 4-, 5- and 6-sided polygons. Each of these are meshable by midpoint subdivision and an integer
programming method can be used to find allowable division numbers on the subblock edges [4,5]. An augmented
algorithm with this approach has apparently been implemented in the commercial software of Abaqus [6], offering
automatic high quality meshing capability.

More recently, Rigby [7] proposed an algorithm called ‘TopMaker’. It consists of a few simple rules for creat-
ing suitable cuts at medial vertices and along the medial axis and it is surprisingly effective in generating pleasing
decompositions for a certain class of geometries.

Other related methods include [8] which is less general and has rules specifically tailored for managing circular
holes. The ‘d-MAT’ method used by Xia and Tucker [1,9] has similar rules to the TopMaker method and produces
comparable decompositions.

1.2.1. Weaknesses of TopMaker and Tam and Armstrong (T&A) methods
In comparison to other widely used general quad meshing algorithms, such as paving [10] or cartesian grid meth-

ods [11], the TopMaker and T&A algorithms can usually generate superior block-structured meshes; they have fewer
mesh singularities (defined in Sec. 2.2) and simpler topologies than paved meshes and have high quality elements on
the boundaries unlike Cartesian meshes. However, they are in fact only effective for certain types of surfaces.

Neither handles concavities particularly well. The TopMaker algorithm makes the assumption that all corners are
flat except those connected to flares which have one element. Using the definitions given in Sec. 3 (Fig. 6 (right)),
these translate as nc = 2 and nc = 1 type corners respectively. Whilst this makes the decision making in the algorithm
very straightforward, it doesn’t always lead to serviceable decompositions. Consider the decomposition shown in
Fig. 2 (top right). The mesh is forced to wrap around the trailing edges which leads to highly distorted blocks.
Therefore, in general, acceptable quality decompositions are only created for geometries with corner angles <∼ 5π/4.
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The T&A method performs slightly better with concavities, as supported by Fig. 2 (bottom right). In the first
stage the surface is split by the best candidate CDT edges that most closely fit with the assigned mesh patterns at the
corners, which are chosen based on corner angles. The splitting edges for concavity removal are shown in blue in
Fig. 2 (bottom left). This strategy can at least produce nc = 3 and 4 type corner patterns but it often does not lead to
the best overall mesh topology. For example, the method always creates a split between concave vertices that share
an inscribed circle and this results in the sub-optimal decomposition shown in Fig. 3 (centre) for the indents surface.
But the most obvious and best quality decomposition is shown in Fig. 3 (right).

Fig. 2: Multi-element aerofoil surface decomposed by TopMaker and T&A algorithms.

Fig. 3: Indents surface decomposed by T&A algorithm and its preferred decomposition.

Another limitation is the almost exclusive use of topological information in the medial axis and the disregard of
important embedded geometrical shape information. For example, each of the three surfaces shown in Fig. 4 (top
row) are the same as far as the TopMaker and T&A algorithms are concerned because the medial axis topologies are
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Fig. 4: Three surfaces with the identical medial axis topology but quite different geometric shapes (top row) and suggested good quality decompo-
sitions (bottom row).

identical. Thus, they are all treated as rectangular blocks for which a regular grid can be used in their interiors. This is
appropriate for the first surface but a regular grid mapped to the second and third will be highly distorted. Preferably,
they would be decomposed, or more specifically, the block topology solutions should contain some positive-negative
singularity pairs giving the block structure sketched in Fig. 4 (bottom row – middle and right).

1.3. Contributions

Herin, a new approach is described which combines the medial axis based decomposition algorithms and the frame
field decomposition approaches [12–14]. It makes use of the valuable and hitherto neglected geometric information
in the medial axis, namely the medial angle, which leads to the development of a simple well-reasoned method for
finding an effective mesh topology. The method can find a suitable configuration of mesh singularities on the medial
axis which is essentially the critical step in a mesh generation problem (briefly substantiated in the next section). It
contains a general way of handling concavities and it is precisely responsive to important geometric shapes so that the
preferred solutions shown in Fig. 3 (right) and Fig. 4 (bottom row) are found automatically.

2. Theoretical properties of quad meshes

2.1. Introduction

The new techniques are reasoned in terms of a precise theoretical description of unstructured quad meshes with
infinitesimal properties that was described by Bunin [15]. The theory gives insight into the fundamental properties
of quad meshes and explains the crucial role played by mesh singularities, which are nodes where the regular grid
connectivities are disrupted.

2.2. Overview of the theory

The key results of Bunin’s theory are:

• The governing equation of an orthogonal mesh is

∆Sφ = K +

N∑
i=1

ki
π

2
δpi , ki ∈ Z ≥ −4. (1)
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where ∆S is the Laplace-Beltrami operator, φ is a scalar field controlling the mesh, K is the Gaussian curvature,
ki is the type of the singularity and δpi is a Dirac delta function centred at pi. This is a Poisson equation and it
describes stationary heat conduction amongst other physical phenomena.

• The type of a singularity is given by the integer k which essentially denotes the number of additional elements
above four at a node.

• The variable φ corresponds to − ln h, where h is the edge length of an infinitesimal square element.
• The curvatures of the mesh edges are related to the variation in the φ-field by

κg =
∂φ

∂e
≡ 〈∇Sφ, e〉, (2)

where κg denotes the geodesic curvature of the edge and its intrinsic normal, e, is defined by e = n × t where n
and t are the surface normal and the tangent vector respectively.

• A cross-field describing the mesh directionality (see [12,13,16–18]) is closely related to the φ-field. The total
change in angle of a cross along a curve, α, (in a parallel-transport sense) is given by

∆θ =

∫
α

∂φ

∂e
ds. (3)

With regard to the problem of mesh generation, a continuum description of a mesh can be obtained by solving a heat
conduction type problem (by FEM for example) once a valid arrangement of mesh singularities have been specified.
However, finding the positions of mesh singularities is non-trivial, indeed in the context of this theory it is in the class
of Inverse Poisson problems which are known to be ill-posed and difficult to solve effectively [19].

3. Resolving mesh singularities using the medial axis

3.1. Optimum mesh-flow indicated by the medial angle

The medial axis supplies a link between nearby boundaries and provides a means to assess the geometry locally.
An intuitive idea is that the relative orientations of the boundaries indicate preferred patterns of the mesh in the
intermediate areas. It is convenient to use a cross-field representation of the mesh to demonstrate this.

Given two points with assigned crosses, the total change in angle of any cross-field between them is unique up to
a multiple of π/2. The multiplying integer, call it n, essentially specifies the number of π/2 turns made by a cross
moving between the points. With reference to Bunin’s continuum theory, the total flux through a curve linking the
points is given by

Φα ≡

∫
α

∂φ

∂e
ds =

∫
α

κg ds + θb − θa − n
π

2
, (4)

with the symbol definitions as indicated in Fig. 5 (left). If smooth regular cross-fields are preferred then the total flux
should be minimised and the optimum integer for n can be computed by

n|optimum = round


∫
α
κg ds + θb − θa

π/2

 . (5)

For the particular case of a planar surface with the curve α composed of the medial radii (traversed so that κg is
positive), then

∫
α
κg ds = π − θm. If the touching points are on boundary edges then θa and θb are zero, therefore

n|optimum = round
(
π − θm

π/2

)
. (6)

The three basic mesh-flow types between boundary edges linked by the medial axis and their preferred medial angle
ranges are summarised in the table in Fig. 5 (right). If the touching points are on concave vertices θa and θb are not
zero in general. To determine the optimum mesh-flow type in these cases the cross directions from which θa and θb
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Fig. 5: Curve between two boundary-aligned crosses of nearby boundaries (left) and a table summarising the optimum mesh-flow types for medial
angle ranges (right).

are measured are chosen so that their values are minimised and the non-zero entry θb−θa is included in the calculation
of Φα. Alternatively, the medial radii directions can be adjusted by θa and θb before θm is measured as shown in
Fig. 6 (left).

In a similar way, the optimum mesh patterns at boundary corners can be decided by minimising the associated
total flux radiating from the corner in the φ-field. Bunin gives an analytic expression for the strength of a point source
necessary at a corner which involves the corner angle, θc, and an integer nc that essential defines how many elements
occur there. Choosing nc to minimise the strength gives the optimum ranges shown in Fig. 6 (right). Thus, appropriate

Fig. 6: Adjustments at concave vertices (left) and optimum mesh patterns at corners (right).

assigned crosses at corner vertices have either one direction along the corner bisector (nc = 0, 2, 4) or one offset by
π/4 from the bisector (nc = 1, 3).

3.2. Identifying mesh singularities

If the optimum mesh-flow behaviour is selected for every position of the medial axis the positions of mesh singu-
larities are essentially specified. A general method for identifying these positions involves a flux balance calculation.
Supposing the surface is sliced into a series of thin regions by medial radii as shown in Fig. 7 and 8. Treating each
sliver as a control area, a flux balance analysis can be carried out using the medial angle-dependent values for the
total fluxes across pairs of medial radii as described above. The total fluxes across the small boundary segments are
given by the differences in angle of the adjacent boundary-aligned crosses (which should be small). The flux residual
must equal kπ/2 where the integer k denotes the type of singularity present. Usually only simple singularities occur,
i.e. k = ±1 or ‘positive’ and ‘negative’ singularities. These are marked by blue and red dots respectively in the figures.
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Fig. 7: Examples of flux balancing along medial edges.

Fig. 8: Examples of flux balancing at medial vertices (highlighted in yellow).

In some special cases higher-order singularities can occur, an example of which is at the central medial vertex of a
regular hexagon as shown in Fig. 8 (bottom right) where a k = 2 type singularity occurs, and it is identified in a general
fashion.

At a medial vertex where the touching circle has a finite contact with a boundary there are a range of medial angle
values associated with the medial vertex. These features can be equated to the limiting case where the boundary curve
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tends to a circular arc from an elliptical arc. Thus, the singularity type at the medial vertex is given by

k = −floor
(

max(θm)
π/2

)
. (7)

For example, a semi-circular end of a rectangular block has a corresponding medial vertex with max(θm) = π, therefore
a k = −2 singularity is placed on the medial vertex. This is illustrated in Fig. 9.

Fig. 9: Treatment of finite contact regions. A circular arc is equivalenced to an elliptical arc whose curvature tends towards uniformity.

3.3. Algorithm

A basic algorithm was developed to use the principles described to find an effective arrangement of mesh singular-
ities. Its general steps are outlined below. It was implemented in a Python program using the CADfix API [20].

Algorithm 1. Find mesh singularities using medial axis

1. Generate the medial axis for the surface. CADfix’s [20] CDT based medial axis generation tool is used for this.
2. For each medial edge assemble a sequence of analysis positions between the start and end points of the edge. A

suitable interval size will capture the smooth change in θm and ensure that a single critical switch point of the
optimum mesh-flow is contained in the interval.

3. Perform a total flux balance calculation for each sliver region bounded between the interval positions on medial
edges and medial vertices, hence determine appropriate singularity positions.

The essential output of the algorithm is a list of singularity positions and types. Line geometry is also created
purely to illustrate the method which is shown in the next section.

3.4. Results

Depictions of the algorithm results for geometries that were previously seen in Figs. 2–4 are shown in Fig. 10. Two
images are included for each example, one showing the medial axis and artefacts representing the solution process,
and the other showing a crudely defined cross-field. When creating the crosses their overall turning behaviour over
the medial radii is taken from the assigned mesh-flow type and a smooth and even rate of change of angle is assumed.

The results match the ‘preferred decomposition’ topologies in each case. The additional positive and negative
singularities appear in their natural positions in the ‘squeezed’ and ‘pinched’ rectangle surfaces. And, the concavities
in the multi-element aerofoil and indents surfaces are satisfyingly managed.

One approach to generating a multiblock decomposition is to trace the separatrices of a cross-field. This has been
explored in [13,21,22] and robust and effective cross-field initialisation and streamline tracing on a triangulation of
the surface have been developed. In Fig. 11 a decomposition of the multi-element aerofoil surface is shown that was
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Fig. 10: Example results of singularity identification algorithm.

created by the method of [22] with corresponding mesh singularities and cross-field (but more exactly defined) to
those in Fig. 10. In principle, these methods could be applied in the present method (with some modifications to
clean up the cross-fields) but it would eliminate the niche that the medial axis decomposition methods fit into. Medial
axis based methods should be ‘lightweight’, cheap, fast and robust, otherwise they offer no advantage over more
sophisticated methods [21,23,24] that can handle more general problems with target size fields. Thus, undemanding
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Fig. 11: Multiblock decomposition of multi-element aerofoil by [22].

techniques are called for to split the geometry using the medial axis in accordance with the mesh details obtained by
the presented techniques, in an analogous manner to the T&A and TopMaker methods, but generating better quality
decompositions.

4. Proposed decomposition procedure

Three agendas for choosing splits are:

1. to isolate singularities into separate blocks, except those closer than a minimum distance (a fraction of the local
rm, say),

2. to create splits from concave corner vertices in agreement with the assigned mesh patterns,
3. and to remove holes so that all blocks are topological discs.

4.1. Splitting edges

The most straightforward tactic for creating splits is to use the medial radii spanning between the touching points
coupled by the medial axis. The two standard types are those made by pairs of medial radii between boundary edges
where the adjoining convex corner is designated a nc = 2 or nc = 1 type as shown in Fig. 12 (left). The first choice
is the nc = 2 type split because it produces logically1 convex sub-regions, whereas a nc = 1 type split results in a
concave nc = 3 type corner.

Fig. 12: Splitting edges between boundary edges (left) and from concave vertices (right).

1i.e. treating curvilinear grid edges as straight lines.
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Fig. 13: Creating splitting edges between opposite concave vertices (left) and mesh templates for simple primitives (right).

For a logically concave vertex (i.e. nc = 3 or 4) there are a discrete number of medial radii connected to the vertex
that are allowed to be used as part of a split, as shown in Fig. 12 (right). The most complex scenario is when two
concave vertices are on opposite sides of the medial axis. In these cases, there are no legitimate splits composed of
pairs of medial radii generally. A simple work-around is to join a splitting edge of one orthogonally to the appropriate
opposite splitting edge as shown in Fig. 13 (left).

4.2. Algorithm

The essential steps in the proposed decomposition procedure are itemised below.

Algorithm 2. Decompose surface

1. Create splits from concavities.
2. Create splits to isolate singularities.
3. Check if all decomposed subregions are topological discs. If not, add extra splits.
4. Apply additional splits to remove logically non-convex corners from subregions.

The final product is a decomposed surface where each block is identifiable as a logical m-sided polygon and standard
mesh templates (seen in Fig. 13 (right)) can be applied to each. These are applicable to blocks that have m clear-cut
nc = 1 type corners and the rest of the type nc = 2.

In the first step, splits are created from nc = 3 and nc = 4 type concave vertices. A single split is sufficient for both,
taking the central one of the three candidates for nc = 4 type vertices and either of the two for nc = 3 type vertices.
Whenever there are multiple possibilities for splits they can be ranked; nc = 2 type splits are always preferred over
nc = 1 and subtended angles closer to π and π/2 are liked better for each. Next, suitable splits are searched for to
separate singularities that are above the local threshold distance, again opting for the highest ranked candidate split.
Usually the first two steps will decompose the surface into topological disc blocks. If that is not the case then suitable
additional splits should be made. Finally, splits are needed to further decompose logically non-convex subregions so
that the standard mesh templates can be applied. This can be achieved by projecting an edge from a concave vertex to
a nearby logically perpendicular block boundary or to an added nearby logically perpendicular nc = 2 type split.

Examples of the decompositions possible from this approach are shown in Fig. 14. The mid-point subdivision
edges of the mesh templates are sketched in dotted lines.
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Fig. 14: Illustrative results of decomposition procedure.
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5. Conclusion

A novel approach has been described for using the medial axis to first identify an effective configuration of mesh
singularities, and secondly, to decompose the surface for block-structured meshing. The weaknesses of existing
medial axis based methods due to assumed mesh behaviour in relation to the medial axis which is inappropriate
around concavities are avoided. The proposed methods offer more capable handling of 2-D surfaces of all types
for generating high-quality decompositions. And yet, the increased generality does not entail a large increase in
complexity.

Future work includes refining the implementation details of the singularity identification program and putting into
effect the proposed decomposition algorithm.
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